lunes, 11 de abril de 2011

Acoplamiento,exitación y contracción.

El retículo sarcoplásmico (RS):
Por: Aragón-Molina Brent



 Es el principal almacén de calcio intracelular en el músculo estriado y participa de forma importante en la regulación del proceso acoplamiento–excitación–contracción (AEC) en el músculo esquelético y cardíaco, regulando las concentraciones intracelulares de calcio durante la contracción y la relajación muscular. Esta regulación está dada por la interacción de las principales proteínas del RS que son el canal de liberación de calcio o receptor de rianodina, la ATPasa de Ca2+, fosfolamban y calsecuestrina. Por la relevancia del AEC en la fisiopatología de varias enfermedades cardíacas, se ha estudiado extensamente el papel que mantiene el RS y sus distintos componentes proteicos en distintas patologías, principalmente en la hipertrofia cardíaca, la insuficiencia cardíaca y en las arritmias hereditarias. Por lo anterior, las proteínas del RS constituyen un área de gran interés para el desarrollo de nuevas terapias, por lo que resulta de gran importancia el comprender la función del RS. En este artículo de revisión se analiza la estructura y función de las principales proteínas del RS, su papel en los procesos de contracción y relajación muscular, así como los cambios en expresión y función que ocurren en diferentes patologías cardíacas.
  

El acoplamiento excitación contracción

El acoplamiento entre la excitación y contracción muscular (AEC) es el mecanismo que acopla la despolarización del sarcolema con la liberación de Ca2+ del RS, es un proceso que depende de la interacción entre los canales de Ca2+ dependientes de voltaje tipo L (DHPR) y los canales de liberación de Ca2+ del RS (RyR). La liberación de Ca2+ por el RS es esencial en la actividad cardíaca y es el activador directo de los miofilamentos que llevan a cabo la contracción; el manejo incorrecto de [Ca2+] por los cardiomiocitos es una de las principales causas de disfunción contráctil y arritmias en condiciones patológicas.56, 57
Durante el potencial de acción, el Ca2+ entra a la célula por la activación de los canales tipo L (DHPR) debida a la despolarización, lo que provoca una corriente entrante de Ca2+ (Ica), la entrada de una cantidad pequeña de Ca2+ es detectada por el canal RyR y resulta en la activación de éste, lo que permite que los RyRs se abran y permitan la salida de una cantidad masiva y rápida de Ca2+ del RS, la combinación del Ca2+ entrante por el canal DHPR y el liberado del RS incrementa rápidamente la [Ca2+]i que permite la unión del Ca2+ con la troponina C, lo que a su vez permite la activación de la maquinaria contráctil.58 Recientemente se han descrito otros dos mecanismos que pueden inducir la liberación de Ca2+ del RS; el primero es a través de canales tipo T de Ca2+, el segundo es por medio del NCX, al invertir el flujo y generar una entrada de Ca2+ tanto por un aumento de la concentración de Na+ citosólico y/o por una despolarización; sin embargo ambos mecanismos son menos efectivos en provocar la liberación de Ca2+ por el RS, en comparación con el DHPR y su papel fisiológico es poco claro.59
Los canales DHPR son activados por la despolarización y son inactivados en una forma Ca2+ dependiente, lo que limita la cantidad de Ca2+ que entra a la célula por el potencial de acción, esta inactivación dependiente de Ca2+ es mediada por CaM unida al extremo carboxilo–terminal del canal DHPR. Generalmente, la zona donde se encuentran los canales DHPR está en proximidad al JRS, donde se encuentran los canales RyR, con lo que funcionalmente se facilita la activación de éstos, la apertura de un canal DHPR asociado a un canal RyR (couplón) asociando 2–4 iones Ca2+ al RyR es suficiente para activar totalmente el proceso de liberación en ese couplon, los RyR que se encuentran en la periferia de un couplon, pueden activarse ya sea por una concentración local alta de Ca2+ (>10 µM) o por un acoplamiento con el RyR del couplón, con lo que se tiene un mecanismo de todo o nada, pero debido a que la concentración de Ca2+ entrante decae rápidamente entre couplones, conlleva a que la activación no se propague; un mecanismo que funciona para generar un margen de seguridad es la asociación de más de un canal de RyR por couplón (10–25 DHPR/ 100 RyR) con lo que se asegura que cada couplón dispare y propague el impulso inicial56,57 (Fig. 2). Una vez que se ha llevado a cabo la contracción muscular, es necesario que la [Ca2+], regrese a sus niveles en reposo (10–20 nM), para permitir la relajación muscular, en el proceso de retirar el Ca2+ del citoplasma, hay 2 mecanismos fundamentales en mamíferos, uno está dado por SERCA2a mencionado previamente, que se encarga de transportar activamente el Ca2+ al interior del RS, el otro mecanismo de importancia es el intercambiador de Na+/Ca2+ (NCX), el cual desplaza por gradientes Ca2+ hacia el exterior de la célula, y desplaza Na+ al interior de la célula. Existen además otros mecanismos que pueden contribuir al movimiento del Ca2+, como son las ATPasas de Ca2+ de la membrana plasmática (PM–CAs) y los transportadores mitocondriales de Ca2+, sin embargo su contribución para restituir la concentración normal de Ca2+ intracelular [Ca2+]i total en la relajación durante condiciones fisiológicas normales es mínima. En condiciones fisiológicas en el corazón humano, SER–CA2 desplaza –60% del Ca2+ de vuelta al interior RS y el NCX moviliza –40% del Ca2+ restante al espacio extracelular, aunque estos porcentajes varían de especie a especie y pueden modificarse en condiciones patológicas.56, 57
La liberación de Ca2+ del RS inducida por Ca2+ (LCIC) en cardiomiocito es un mecanismo de retroalimentación positiva, pero su inactivación es necesaria para la recarga diastólica, por lo que se han propuesto tres mecanismos para esta inactivación: 1) la depleción del RS de Ca2+, 2) la inactivación o adaptación del RyR y 3) el agotamiento estocástico. El agotamiento estocástico se refiere a que todos los canales DHPR y RyR se cierran simultáneamente, la corriente entrante de Ca2+ decae rápidamente y se interrumpe el proceso de liberación; este mecanismo es poco probable de ocurrir debido al número de canales que se activan normalmente. La depleción local de Ca2+ no es capaz de explicar en su totalidad la inactivación de la LCIC debido a que se han observado que después de tiempos prolongados (> 200 ms) la cantidad de Ca2+ liberado por el RS no disminuye. Se han propuesto dos formas de inactivación de RyR, ambas dependientes de Ca2+, una es la inactivación por absorción en la que el RyR es incapaz de reabrirse hasta que se recupera, y la otra es por adaptación en la que después de activarse, las probabilidades de apertura del canal son menores, pero aún es posible que se abra ante una corriente mayor de Ca2+ entrante. Hasta el momento no se ha determinado si sólo uno de estos mecanismos es relevante y existen pocos estudios que arrojen datos concluyentes.56–59


Conclusiones:

El retículo sarcoplásmico es un organelo de las células musculares estriadas que ha sido extensamente estudiado y que tiene un papel central en el proceso del AEC, donde varios de sus componentes mantienen funciones esenciales para el desarrollo de la contracción miocárdica. La expresión y función de las proteínas del RS se encuentra regulada finamente, en particular los dos componentes de mayor importancia que son el canal de liberación de Ca2+ (RyR) y la ATPasa de Ca2+ (SERCA2a), que junto con los canales de Ca2+voltaje dependientes (DHPR) y el intercambiador de Na+ y Ca2+ (NCX), son los componentes centrales que disparan la contracción muscular. Además la calsecuestrina, triadina y juntina presentes en la luz del RS participan activamente en el proceso de liberación de Ca2+.
Debido a este papel fundamental, se ha demostrado que las proteínas del RS también juegan un papel muy importante en el desarrollo y progresión de enfermedades cardíacas, donde la hipertrofia y la insuficiencia cardíaca han sido las más estudiadas. La mejor comprensión de la estructura y función y expresión de las proteínas del RS dan la pauta para comprender la fisiopatología de la hipertrofia cardíaca por exceso de presión, la IC y las arritmias, así como el potencial que representan para futuras intervenciones terapéuticas.

Referencias de internet
56. Bers DM: Cardiac excitation–contraction coupling. Nature 2002; 415: 198–205.        [ Links ]
57. Shannon TR, Bers DM: Integrated Ca2+ management in cardiac myocytes. Ann N Y Acad Sci 2004; 1015: 28–38.        [ Links ]
59. Richard S, Perrier E, Fauconnier J, Perrier R, Pereira L, Gomez AM, et al: ‘Ca (2+)–induced Ca(2+) entry' or how the L–type Ca(2+) channel remodels its own signalling pathway in cardiac cells. Prog Biophys Mol Biol 2006 90: 118–13

Bibliografía:
Archivos de cardiología de México
version impresa 1405-9940
Arch. Cardiol. Méx. v.76  supl.4 México oct. /dic. 2006

No hay comentarios:

Publicar un comentario